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Reinforcement Learning with Wasserstein Distance
Regularisation, with Applications to Multipolicy Learning
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Abstract

We describe an application of Wasserstein distance to Reinforcement Learning. The
Wasserstein distance in question is between the distribution of mappings of trajectories of a
policy into some metric space, and some other fixed distribution (which may, for example,
come from another policy). Different policies induce different distributions, so given an
underlying metric, the Wasserstein distance quantifies how different policies are. This can
be used to learn multiple polices which are different in terms of such Wasserstein distances
by using a Wasserstein regulariser. Changing the sign of the regularisation parameter, one
can learn a policy for which its trajectory mapping distribution is attracted to a given fixed
distribution.
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1. Introduction and Motivation

Reinforcement learning (RL) is a formalism for to modelling and solving sequential decision
problems in which an agent interacts with its environment and receives a scalar reward
(Suton and Barto, 1998). In recent times, deep reinforcement learning has been successfully
used to solve numerous continuous and discrete control tasks, often in continuous state
spaces (Mnih et al., 2015; Silver et al., 2016).

In this paper we consider the classical reinforcement learning problem of an agent that
interacts with its environment while trying to maximise its cumulative reward (Burnetas
and Katehakis, 1997; Kumar and Varaiya, 2015). We are interested in RL problems modeled
as Markov Decision Processes (MDP) M = (S,A, T , R, γ) where S and A denote the state
and action spaces which could be discrete or continuous, γ ∈ (0, 1] is the discount factor,
and T and R are the transition and reward functions respectively. The transition function
T : S×A → ∆S specifies the dynamics of the MDP and in general is assumed to be unknown.
Where given any - possibly infinite- set X , we denote by ∆X the set of distributions over
X . The reward function R : S ×A → R specifies the utility gained by the agent in a given
transition. In this paper we consider both finite and infinite horizon MDPs. Due to practical
considerations for our experimental results we consider finite horizon problems.

In an MDP, a trajectory τ = (s0, a0, r0, s1, a1, r1, · · · ) with si ∈ S, ai ∈ A and ri ∈ R
for all i is a sequence encoding the visited states, actions taken and rewards obtained
during an episode of the agent’s interaction with the environment. All trajectories satisfy
τ ∈ (S ×A× R)H , where H is the MDP’s horizon. For ease of notation we set H =∞ in
what follows, although all our results hold for finite H and also for cases when the MDPs
trajectories can have variable lengths.
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Any MDP M has a corresponding set of trajectories Γ ⊂ (S ×A× R)∞ that may be
taken. In this paper we consider stochastic policies that map any state in S to a distribution
over actions. Any policy π : S → ∆A over M will induce a probability measure over its
space of trajectories Γ. Let M be a metric space endowed with a metric d : M ×M → R+.
An embedding is a function f : Γ → M mapping trajectories to points in M . For any
MDP and policy pair (M, π), an embedding f : Γ→ R induces a distribution πM over M .
Different policies will induce different measures.

The main aim of this paper is to tackle the problem of defining a similarity measure
between different policies acting over the same MDP. The central contribution of this work is
to propose the use of metric space embeddings for the trajectory distributions induced by a
policy and use them as the basis of novel algorithms for policy attraction and policy repulsion.
The principal ingredient of our proposed algorithms is the use of a computationally tractable
alternative to the Wasserstein distance between the distributions induced by trajectory
embeddings. The metric d : M ×M → R+ gives us a way to quantify how much individual
trajectories differ, and this in turn can be used in the framework of optimal transport (Villani,
2008) to give a measure of how different the behaviour of different policies are.

There are many reasons why we might care about how the behaviour of policies compare
against each other. For example, in the control of a telecommunications network, designing
for robustness is central, and promotion of diversity is a classical approach (Pióro and Medhi,
2004). A single policy may be quite heavily reliant on certain sub-structures (links, nodes,
frequencies, etc.), but due to reliability issues, it may be desirable to have other policies at
our disposal which perform well but which behave differently to each other. This way, there
are back-up options if the parts of the network go down. That is, in learning the different
policies, we wish the trajectory distributions to have a repulsive effect on each other. This
becomes especially pertinent with the rise of Software Defined Networking (SDN) (Kreutz
et al., 2015), which, in a nutshell, is a paradigm in which the “intelligent” components
of network control (broadly speaking, the algorithms for resource allocation) are moved
away from the routers into a (logically) centralised software controller. The routers become
dumb but very fast machines which take their direction from the centralised controller. This
present opportunities for online (Paris et al., 2016) and real-time (Allybokus et al., 2017)
control, but naturally places a smaller time horizon for mitigating robustness problems.

Another motivation is the subject of the first of our experiments. Here, we wish to model an
agent trying to learn to maneuver through most efficient route between designated start and
end points over a hilly terrain (modelled in our experiments as a grid world (Suton and Barto,
1998)). The most efficient route(s) maybe affected by the specifics of the agent itself, merely
due to the physics of the scenario (e.g., consider the difference between an off-road 4x4 vehicle
and a smaller delivery pod such as those of Starship Technologies (www.starship.xyz)), so
the best route for one type of agent may not be exactly the best route for another. However,
they may be similar, and this motivates us to consider using a pre-existing good route to
influence the learning of the agent; the trajectory distributions have an attractive effect on
each other. Within our algorithm, the difference between attractive and the aforementioned
repulsive effects is a change of sign in the regularisation factor of the Wasserstein term in an
objective function.

Informally stated, our contributions are as follows: We present reinforcement learning
algorithms for finding a policy π∗ where the objective function is the standard return plus
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regulariser that approximates the Wasserstein distance between the distribution of a mapping
of trajectories induced by π∗ and some fixed distribution. Thus, the algorithm tries to find a
good (in the standard sense) policy π∗ whose trajectories are different or similar to some
other, fixed, distribution of trajectories.

It is clear that in the end, the aim of control is not the policy itself but the actual behaviour
of the system, which in reinforcement learning is the distribution over trajectories. The
Wasserstein distance, also known as the Earth-Mover Distance (EMD) (Villani, 2008;
Santambrogio, 2015), exploits an underlying geometry that the the trajectories exist in,
which is something that say, Kullback-Leibler (KL) or Total Variation (TV) distance don’t.
This is advantageous when a relevant geometry can be defined. It is particularly pertinent to
RL because different trajectories means different behaviours, and we would like to quantify
how different the behaviours of two policies are in terms of how different are the trajectories
that they take. For example, if Γ = {τ1, τ2, τ3}, and each of three policies πi induces Dirac
on τi, then in KL and TV terms, any pair of policies are just as different to each other as
any other pair. However, if τ1 and τ2 are very similar in terms of behaviour (as defined by
d(f(τ1), f(τ2)), but are both very different to τ3, then this will not be captured by KL and
TV, but will be captured by Wasserstein.

Note that whilst the above examples have the fixed distribution coming from the previously-
learned policy of the first agent, this is not necessary as the algorithms merely require a
distribution as an input (without any qualification on how that distribution was obtained).
The usefuleness of the algorithms are, however, particularly clear when the (fixed) input
distribution comes from a learned policy as in that case, the behaviours could be quite
complex, and knowing a priori how to influence the learning (e.g., through reward-shaping),
can be difficult, if not impossible.

2. Entropy-regularised Wasserstein Distance

Let µ and ν be two distributions with support x1, · · · , xk1 and y1, · · · , yk2 with xi and yj
elements of a metric space M for all i, j. The Wasserstein distance W (µ, ν) between P and
Q is defined as:

W (µ, ν) := min
κ∈K(µ,ν)

〈κ,C〉 (1)

Where C ∈ Rk1×Rk2 and satisfies Ci,j = d(xi, yj) and K(µ, ν) denotes the set of couplings
- joint distributions having µ and ν as left and right marginals respectively. Computing
the Wasserstein distance and optimal coupling between two distributions µ and ν can be
expensive. Instead, as proposed in Cuturi (2013), a computationally friendlier alternative
can be found in the entropy regularised variation of the Wasserstein distance, which for
discrete distributions takes the form:

Wρ(µ, ν) := min
κ∈K(µ,ν)

〈κ,C〉 − ρH(κ) (2)

Here H(κ) = −
∑

i,j κij log κij is the entropy of the coupling κ, and ρ > 0 is a regularisation
parameter.

More generally for the case of continuous support distributions, and following Genevay et al.
(2016), let X and Y be two metric spaces. Let C(X ) be the space of real-valued continuous
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functions on X and letM1
+(X ) be the set of positive Radon measures on X . Let µ ∈M1

+(X )
and ν ∈M1

+(Y). Let K(µ, ν) be the set of couplings between µ, ν:

K(µ, ν) := {κ ∈M1
+(X × Y) ; ∀(A,B) ⊂ X × Y, κ(A× Y) = µ(A), κ(X ×B) = ν(B)}

That is the set of joint distributions κ ∈M1
+(X × Y) whose marginals over X and Y agree

with µ and ν respectively. Given a cost function c ∈ C(X × Y), the entropy-regularised
Wasserstein distance Wρ(µ, ν) between µ and ν is defined as:

Wρ(µ, ν) := min
κ∈K(µ,ν)

∫
X×Y

c(x, y)dκ(x, y) + ρKL(κ||µ⊗ ν) (3)

where ∀(κ, ξ) ∈M1
+(X × Y)2, the KL-divergence between κ and ξ is defined by

KL(κ||ξ) =

∫
X×Y

(
log

(
dκ

dξ
(x, y)

)
− 1

)
dκ(x, y).

Here dκ
dξ (x, y) is the relative density of κ with respect to ξ, and we define KL(κ||ξ) = +∞ if

κ doesn’t have a density with respect to ξ.
Note, we say the optimal coupling because the above is a strongly-convex problem, unlike the
unregularised version. The algorithm in Cuturi (2013) is based on finding the dual variables
of the Lagrangian by applying Sinkhorn’s matrix scaling algorithm (Sinkhorn, 1967), which
is an iterative procedure with linear convergence.
Stochastic optimisation algorithms were presented in Genevay et al. (2016) for the cases
where (i) µ, ν are both discrete, (ii) when one is discrete and the other continuous, and (iii)
where both are continuous. We give algorithms for all cases, but due to their similarity and
lack of space, we defer all but the continuous-continuous case to the Appendix.

3. Algorithm for Continuous-Continuous Measures

Recall M is a metric space and f : Γ → M . Let ν be a fixed measure over M . We
parameterise our policy with a vector θ ∈ Θ where Θ is a parameter space. The objective is:

max
θ∈Θ

V (θ) + λWρ(µθ, ν) (4)

where V (θ) := Eπθ
[∑

t≥0 γ
tr(st, at) | s0

]
≡ Eτ∼πθ [R(τ)] is the standard objective in RL, µθ

is the distribution over M induced by πθ and λ ∈ R is a regularisation parameter. Note: λ
can be positive or negative. If it is positive then repulsion is promoted, whilst
if it is negative, then attraction is promoted.
In Genevay et al. (2016), a stochastic optimisation algorithm is presented for computing
Wasserstein distance between continuous distributions. The dual formulation gives rise to
test functions (u, v) ∈ H ×H where H is a reproducing kernel Hilbert space (RKHS). The
type of RKHS we will use will be generated by universal kernels (Micchelli et al., 2006),
thereby allowing uniform approximability to continuous functions u, v.

Proposition 1 (Dual formulation (Genevay et al., 2016))

Wρ(µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y) − ρ

∫
X×Y

exp

{
u(x) + v(y)− c(x, y)

ρ

}
dµ(x)dν(y)
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The solution κ of problem (3) can be recovered from a solution to the above by setting

dκ(x, y) = exp
{
u(x)+v(y)−c(x,y)

ρ

}
dµ(x)dν(y).

Applying Proposition 1 with X = Y = M , we can write (4) as

max
u,v∈C(M)

max
θ∈Θ

Eτ∼πθ,y∼ν [λ · Fρ(f(τ), y, u, v) +R(τ)]

where Fρ(x, y, u, v) := u(x) + v(y)− ρ exp
{
u(x)+v(y)−c(x,y)

ρ

}
.

We consider functions u, v to be elements of the RKHS H generated by K. If K is a
universal kernel over X (≡M), the search space for u, v space will be rich enough to capture
C(X ) (Steinwart and Christmann, 2008). Under these assumptions the k’th step of stochastic
gradient ascent operation in the RKHS for u, v takes the form:

(uk, vk) = (uk−1, vk−1) +
constant√

k
∇u,vFρ(x, y, u, v) (5)

where (x, y) are sampled from the product measure of the two measures being compared, in
our case, µθk and ν. The implementation via kernels is through the following result:

Proposition 2 (Genevay et al. (2016)) The iterates (uk, vk) defined in (5) satisfy (uk, vk) =∑k
i=1 αi(κ(·, xi), κ(·, yi)), where αi := ΠBr

(
const√

i

(
1− exp

{
ui−1(xi)+vi−1(yi)−c(xi,yi)

ρ

}))
, (xi, yi)

k
i=1

are i.i.d. samples from µ⊗ ν, and ΠBr is the projection on the centered ball of radius r. If
the solutions of (1) are in H×H and if r is large enough, then the iterates (uk, vk) converge
to a solution of (1).

To get Algorithm 1, we note that by standard arguments (see e.g., Sutton and Barto, 1998),

∇θEτ∼πθ,y∼ν [λ · Fρ(f(τ), y, u, v) +R(τ)] (6)

= Eτ∼πθ,y∼ν

(λu(f(τ))− λρ exp

{
u(f(τ)) + v(y)− c(f(τ), y)

ρ

}
+R(τ)

)
·
∑
t≥0

∇θ log πθ(a
(τ)
t | s

(τ)
t )

 .
(7)

Algorithm 1 presented below exploits Proposition 2 to perform stochastic gradient decent
on the policy parameter θi by sampling as a substitute for the expectation in (7). Parameters
(αθi )i define the learning rate. With each iteration, the algorithm is growing its estimate
of the functions u and v in the RKHS and evaluating them in lines (7) and (8) using the
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previous samples Xj , Yj to define the basis functions κ(·, Xj), κ(·, Yj). The variable Z is
merely for notational convenience.

Algorithm 1: Stochastic gradient for continuous measures

1 Input: θ0, f,M, λ, ρ, ν, (αθi )i;
2 Initialise: u0, v0, θ0;
3 for i = 1, 2, . . . do
4 sample τ ∼ πθi−1

;
5 Xi ← f(τ);
6 sample Yi ∼ ν;

7 ui−1(Xi) :=
∑i−1

j=1 αjκ(Xi, Xj);

8 vi−1(Yi) :=
∑i−1

j=1 αjκ(Yi, Yj);

9 Z ← exp
{
ui−1(Xi)+vi−1(Yi)−c(Xi,Yi)

ρ

}
;

10 θi ← θi−1 + αθi ·
[
(λui−1(Xi)− λρZ +R(τ)) ·

∑
t≥0∇θ log πθi−1

(a
(τ)
t | s

(τ)
t )
]
;

11 αi := constant√
i

(1− Z)

4. Experiments

4.1 Testing for an Attractive Scenario

We have a 7x10 gridworld with a non-negative integer “height” associated to each cell,
Figure 1. An agent starts in the lower-left corner cell and there is an absorbing state on the
upper-right corner cell. Each movement incurs a penalty of −1−z where z is the height of the
cell moved to. An episode is terminated either by a time-out or reaching the absorbing state.

Figure 1: Gridworld.
Darker is cheaper.

The trajectory mapping f(τ) is a probability distribution of cell
visits made by τ , i.e., a count is made of the number of times each
cell is visited and this value is normalised by the trajectory length.
Thus, f(τ) is a point in the 7× 10− 1 = 69 dimensional probability
simplex. We set ν to be Dirac measure on the unique optimal
solution. Policy parameterisation is by radial basis functions centred
on each cell.

For this set of experiments, the aim was to test the effectiveness of
our algorithms with λ = −1 against policy gradient without Wasserstein regularisation (by
setting λ = 0). Specifically, we wanted to determine if our algorithms got better returns
for a given number of episodes (i.e., iterations). In all cases, the entropy regulariser ρ = 1.
We performed three sets of experiments based on the time-out, i.e., maximum length of a
trajectory before termination of an episode: 30 steps, 40 steps and 50 steps. If the agent did
not reach the absorbing state before the time-out, it would get a penalty. Hence, an optimal
trajectory would incur a total cost of −15. Each experiment consisted of 12,000 episodes
and the result recorded was the return on every 100’th episode. For each time out, we ran
five experiments for each of λ = −1 and λ = 0. As can be seen from Figure 2, λ = −1 (blue)
out-performed λ = 0 (red) in general. Indeed, the former often found a (nearly) optimal
policy whereas the latter often did not. Clock execution time was not hindered by λ = −1,
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Figure 2: Attractive scenario on gridworld; regularised vs unregularised. Time-out at 30, 40
and 50 steps. Unregularised finds optimal solution more slowly or never finds it.

indeed, because good policies were found more quickly, it was usually quicker to complete
the experiments.

4.2 Testing for a Repulsive Scenario

The environment is set on a two dimensional plane where there are two goals (marked with
a dot). The state space equals the (x, y) positions of the agent and the reward varies in
an inversely proportional way to the distance between the agent and the closest goal. The
desired objective is to find the two qualitatively distinct optimal policies in an automated
way. The algorithm that starts with two randomly initialized neural networks each with two
hidden layers of 15 nodes each. The metric mapping is the x position of the agent along
the given trajectory. In contrast to the algorithms described in the previous sections, we do
not start with a target distribution ν to repel at the start of the procedure. Instead, the
algorithm is able to dynamically guide exploration and find two distinct policies.

The results of our runs are shown in Figure 3. Each iteration represents a policy gradient
step in the parameter space of each policy. In order to compute these gradient estimates,
and to find the test functions u, v, we use 100 rollouts of each policy in each iteration.
We use ρ = 0.01. Good convergence to two distinct policies is achieved after roughly 100
iterations. In the following plots we show, along with sample trajectories from each of the
agents at a particular iteration number, images of the test functions u, v and their evolution
through time. It can be seen how these modify the reward structure as the algorithm
runs to penalise/reward trajectories in opposing ways between the two agents. The images
corresponding to iteration 15 are particularly telling as they show how even before the agents
commit to a specific direction the test scores produced by our procedure strongly favour
diversity.

5. Conclusion, Related Work and Future Work

We have introduced the notion of Wasserstein distance regularisation into reinforcement
learning as a means to quantitatively compare the trajectories (i.e., behaviours) of different
policies. To the best of our knowledge, this paper is the first such example of this application.
Depending on the sign of the regulariser, this technique allows policies to diverge or converge
in their behaviour. This has been demonstrated through testing of algorithms presented in
this paper. For future work, it would, perhaps, be natural to compare our techniques to
those of imitation and inverse reinforcement learning (Abbeel and Ng, 2004; Argall et al.,

7



Mohammed Amin Abdullah, Aldo Pacchiano, Moez Draief

Iteration 0 Iteration 15 Iteration 30 Iteration 60 Iteration 100

Figure 3: Learning two policies by repulsive Wasserstein regularisation.

2009), or techniques like guided policy search (Levine and Koltun, 2013). Direct comparison
is not immediate, since our technique obliges the user to define the metric mapping, but we
believe this extra demand would pay off in learning rates or through other considerations
such as the flexibility it gives the user to decide what the important features of behaviour
are, and tailor learning to them.
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Appendix A. Wasserstein-regularised RL for (Semi-)Discrete Measures

We discuss Wasserstein distance between probability measures µ, ν. Suppose M is a metric
space, and µ =

∑n
i=1 µiδxi , ν =

∑m
j=1 νjδyj are finite discrete measures where xi, yj ∈M . A

coupling κ = κ(µ, ν) of µ and ν is a measure over {x1, . . . , xn} × {y1, . . . ym} that preserves
marginals, i.e, µi =

∑
j κ(µi, νj) ∀i and νj =

∑
i κ(µi, νj) ∀j. This then induces a cost of

“moving” the mass of µ to ν, given as the (Frobenius) inner product 〈κ,C〉 where the matrix
C ∈ Rn×m has [C]ij = cij = d(xi, yj), i.e., the cost of moving a unit of measure from xi to
yj . Minimised over the space of all couplings K(µ, ν), we get the Wasserstein distance, also
known as the Earth-Mover Distance (EMD) (Villani, 2008; Santambrogio, 2015).
Let Pn be the n − 1 dimensional probability simplex. We also have a fixed distribution
ν = (ν1, . . . , νn) ∈ Pn over points (y1, . . . , yn) ∈ Mn i.e, with mild abuse of notation, the
measure is µ =

∑n
j=1 νjδyj . Lastly, we have a cost matrix C ∈ Rn×n+ Note f,M, ν, C are

inputs to the algorithm.

Gradient-based Optimisation

Following (4) we have:

∇θ {V (θ) + λWρ(µθ, ν)} = ∇θV (θ) + λ∇µWρ(µ, ν)|µ=µθ · ∇θµθ

Per the standard policy gradient approach (Sutton and Barto, 1998), we can sample
trajectories to get an unbiased estimate of ∇θV (θ). Indeed, for any function g : Γ→ R,

∇θEτ∼πθ [g(τ)] = Eτ∼πθ

g(τ)
∑
t≥0

∇θ log πθ(at |, st)

 , (8)
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meaning we can sample trajectories to obtain unbiased estimates of ∇θµθ.
Finally, the term ∇µWρ(µ, ν)|µ=µθ can be dealt with using the Sinkhorn algorithm itself:
In the computation of Wρ(µ, ν) for a given pair µ, ν, the algorithm computes their optimal
dual variables u∗, v∗, respectively. It can do so because, as mentioned above, the entropy-
regularisation makes the optimisation strongly convex and strong duality is exhibited. Then
u∗ is a (sub)gradient of Wρ(µ, ν) with respect to µ (this will be discussed further below).
Thus, given an estimate of µθ, we can estimate ∇µWρ(µ, ν)|µ=µθ .
Putting it all together, we have derived a simple stochastic gradient algorithm. In Algorithm
2, (αi)i is a learning rate.

Algorithm 2: Wasserstein RL for finite discrete measures

1 Input: θ0, f,M, λ, ρ, ν, (αi)i;
2 Initialise: θ0;
3 for i = 1, 2, . . . do
4 sample τ ∼ πθi−1

;
5 compute estimate gtv(τ) of ∇θV (θ)|θ=θi−1

using (8);
6 compute estimate gtm(τ) of ∇θµθ|θ=θi−1

using (8);
7 update estimate µ̂θ of µθ using τ ;
8 compute estimate gtw of ∇µWρ(µ, ν)|µ=µθi−1

using Sinkhorn Cuturi (2013) and

µ̂θ;
9 θi ← θi−1 + αi · (gtv(τ) + λ · gtw · gtm(τ))

Stochastic Alternating Optimisation via Dual Formulation

The dual of the primal problem (2) was studied in Cuturi and Doucet (2014). Applying it,
we get the following equivalent of (4):

max
θ∈Θ

max
u,v∈Rn

λ (〈u, µθ〉+ 〈v, ν〉 − ρB(u, v)) + V (θ) (9)

where

B(u, v) :=
∑
i,j

exp

{
ui + vj − cij

ρ

}
.

Swapping the order of maximisations:

max
u,v∈Rn

λ (〈v, ν〉 −B(u, v)) + max
θ∈Θ

λ〈u, µθ〉+ V (θ).

The term 〈u, µθ〉 is an expectation, and the above can be re-written:

max
u,v∈Rn

λ (〈v, ν〉 −B(u, v)) + max
θ∈Θ

Eτ∼πθ [λu(f(τ)) +R(τ)]

for an appropriate function u.
An iterative algorithm can proceed by alternatively fixing u, v and maximising θ, and vice
versa. When u is fixed, we can apply policy gradient (Sutton and Barto, 1998) to the term
Eτ∼πθ [λu(f(τ)) +R(τ)];

∇θEτ∼πθ [λu(f(τ)) +R(τ)] = Eτ∼πθ

(λu(f(τ)) +R(τ)) ·
∑
t≥0

∇θ log πθ(a
(τ)
t | s

(τ)
t )


11
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Thus, sampling a trajectory from πθ and using it to compute the bracketed term in (10)
gives an unbiased estimate of the true gradient. This can be used to update θ. Further,
observe that fixing θ, the expression to be maximised in (9) is differentiable in u, v. This
provides the means to increase u, v. This iterative alternating maximisation procedure is
summarised in Algorithm 3.

Algorithm 3: Stochastic gradient for finite discrete measures, dual formulation

1 Input: θ0, f,M, λ, ρ, ν, (αθi )i, (α
u
i )i, (α

v
i )i;

2 Initialise: u0, v0, θ0;
3 for i = 1, 2, . . . do
4 sample τ ∼ πθi−1

;

5 θi ← θi−1 + αθi−1 ·
[
(λui−1(f(τ)) +R(τ)) ·

∑
t≥0∇θ log πθi−1

(a
(τ)
t | s

(τ)
t )
]
;

6 ui ← ui−1 + αui · λ ·
(
f(τ)−∇uB(u, v)|u=ui−1,v=vi−1

)
;

7 sample Y ∼ ν;
8 vi ← vi−1 + αvi · λ ·

(
Y −∇vB(u, v)|u=ui−1,v=vi−1

)
The advantage of this algorithm is that the distributions µθ and ν do not need to be
represented explicitly, they only have to be sampled from.
The above can be generalised to the case µ is an arbitrary measure ν =

∑m
j=1 νjδyj remains

discrete. Starting with the form of the Wasserstein distance given in (3) (which is slightly
different to the version defined in (2)), and taking ν as discrete, it was shown in Genevay
et al. (2016) that by writing first-order optimality conditions, one gets:

Wρ(µ, ν) = max
v∈Rm

EX∼µ [h(X, v)]

where

h(x, v) := 〈v, ν〉 − ρ log

 m∑
j=1

exp

{
vj − c(x, yj)

ρ

}
νj

 .

Thus, in our case, we would have f(τ) ∼ πθ in place of X ∼ µ above, and our objective
would be

max
θ

V (θ) + λ max
v∈Rm

Ef(τ)∼πθ [h(f(τ), v)] = max
θ

max
v∈Rm

+Ef(τ)∼πθ [R(τ) + λh(f(τ), v)] .

Because of the structure of ∇uh(u, v), we cannot use a sampled vector Y ∼ ν as we did with
Algorithm 3, we have to access each element in the vector ν. Hence, this algorithm is useful
when m is not too large. With that said, we can use incremental alternating gradient ascent,
as summarised in Algorithm 4.

Algorithm 4: Stochastic gradient for discrete ν, arbitrary µθ

1 Input: θ0, f,M, λ, ρ, ν, (αθi )i, (α
v
i )i;

2 Initialise: v0, θ0;
3 for i = 1, 2, . . . do
4 sample τ ∼ πθi−1

;

5 θi ← θi−1 + αθi ·
[
(λhρ(f(τ), vi−1) +R(τ)) ·

∑
t≥0∇θ log πθi−1

(a
(τ)
t | s

(τ)
t )
]
;

6 vi ← vi−1 + αvi · λ · ∇vh(x, v)|x=f(τ),v=vi−1

12
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